
TXOne Networks | Keep the Operation Running

|

現代內核漏洞戰爭
越過所有核心防線的系統/晶片虛實混合戰法

August 24, 2023 @ HITCON CMT 2023

PSIRT and Threat Research Sheng-Hao Ma

TXOne Networks | Keep the Operation Running

Sheng-Hao Ma

Senior Threat Researcher,
PSIRT and Threat Research at TXOne Networks Inc.

• 馬聖豪 (@aaaddress1) 目前為 TXOne Networks 產品資安事件應變暨威脅
研究團隊資深威脅研究員，鑽研 Windows 逆向工程分析超過十年經驗，
熱愛 x86、漏洞技巧、編譯器實務及作業系統原理。

• 此外，他目前為台灣資安社群 CHROOT 成員。並曾於 Black Hat USA
、DEFCON、CODE BLUE、 HITB、VXCON、HITCON、CYBERSEC
等各個國內外年會講者與授課培訓，並著有全球熱銷資安書籍
《Windows APT Warfare：惡意程式前線作戰指南》

TXOne Networks | Keep the Operation Running

Several classic BYOVD exploit strategies that laid the foundation for modern
Kernel Pwn techniques. We'll explain how to achieve Kernel Code Execution,
whether it's LPE or RCE.

BYOVD Background: Strategies of Abusing Kernel Pwn

Microsoft strongly adopted the Hypervisor capability of the native chip on
each security protection to construct a series of kernel layer detection to
prevent various classic Kernel Pwn exploitation strategies. Attackers have
also proposed many ways to bypass them, since updated Windows 11 is still
under Kernel Pwn risk with the latest 11th generation Intel chips.

Microsoft Launched a new round of Pwn Attack/Mitigation

To address the above-mentioned All in One Bypass attacker's trick of
poisoning the driver data and forging PTEs, Microsoft introduced HVCI
protection as part of Windows 11. It uses the Intel SLAT to create a second
layer of EPTE tables that allows Windows to tell the chip the sensitive PTEs
should not be forged thus providing an effective defense.

Practice of Windows HVCI and Virtualization-based Security (VBS)

We will cover the new trend of abusing RCE-level exploits as BYOVD, the
attackers in the wild are trying to exploit the system's natural vulnerability in
the default installed driver to abuse the kernel's execution privileges without
having to mount any additional driver.

A New Trend of abusing RCE-level exploits for BYOVD

Outline

01 |

02 |

03 |

04 |

TXOne Networks | Keep the Operation Running

BYOVD Background:
Strategies of Abusing Kernel Pwn

TXOne Networks | Keep the Operation Running

What’s BYOVD?

• BYOVD (Bring-Your-Own-Vulnerable-Driver)

• Attackers bring their own drivers signed by WHQL which allow hackers to abuse the NT
kernel privileges e.g. EoP, PPLKiller, Mimikatz, Shutdown AV, Install untrusted Drivers, etc.

• MSI (GPU-Driver), Process-Explorer, Avast AvosLocker (BlackByte Ransom)

• Amazing Goods to Begin

• HEVD (HackSys Extreme Vulnerable Driver) – Black Hat Arsenal ’16

• Known Techniques

• Function Calls from Model Specific Registers (MSR)

• Plug-and-Play Driver Vulnerabilities (PnP)

• Abuse Unprotected IOCTL Requests

https://blogs.vmware.com/security/2023/04/bring-your-own-backdoor-how-vulnerable-drivers-let-hackers-in.htm
l

TXOne Networks | Keep the Operation Running

Classic: Null Pointer Dereference
• (👉ﾟヮﾟ)👉Null Pointer Dereference👈(ﾟヮﾟ👈)

• Yah, You’re good and know to free your pointer to prevent UAF

• But that is still friendly to hackers to Abuse for LPE ;)

• What🤯 Address NULL allowed to use?

• NTVDM – Support 16bit DOS program emulator running in NT kernel

• Windows 10+ Protection: Only NTVDM.exe can abuse NULL memory
(Yah, still vulnerable)

• All I want For Christmas is running Shellcode in Kernel ☺

1. Allocate memory able to access in Kernel

2. Write Kernel Shellcode into memory

3. Invoke it in NT Kernel ☺

https://blog.xpnsec.com/hevd-null-pointer

TXOne Networks | Keep the Operation Running

HALDispatchTable

• Execute Pointers in NT Kernel ☺

• What if we cannot find any chance to hijack?

• Old but Gold: Overwrite a Pointer called with kernel privileges

• Exploiting Common Flaws in Driver by Ruben Santamarta (2007)

• Getting Physical with USB Type-C: Windows 10 RAM Forensics
and UEFI Attacks (RECON’17)

• HALDispatchTable is our good friend!

• NtQueryIntervalProfile (Ring3) → KeQueryIntervalProfile (Ring0)
→ HalDispatchTable+8h (Ring0)

https://www.abatchy.com/2018/01/kernel-exploitation-7

https://www.abatchy.com/2018/01/kernel-exploitation-7

TXOne Networks | Keep the Operation Running

KUSER_SHARED_DATA

• Allocate memory able to access in Kernel

• Ugh… What if we cannot allocate any memory in kernel?

• Thanks to those genius who playing fun with RCE exploit ☺

• NSA EternalBlue, Wannacry, SMBGhost, SMBleed, etc.

• “在搜尋 memory 後，發現 _KUSER_SHARED_DATA 永遠都會
在 0xfffff78000000000 ，從古今都沒變過，且都是可寫”
by 神★黑客☆天使☽男孩 AngelBoy (HITCON 2020)

https://www.abatchy.com/2018/01/kernel-exploitation-7

https://github.com/chompie1337/SMBGhost_RCE_PoC

https://hitcon.org/2020/slides/My%20journey%20on%20SMBGhost.pdf
https://www.abatchy.com/2018/01/kernel-exploitation-7

TXOne Networks | Keep the Operation Running

Classic Kernel Exploitation of LPE

ntdll.dll

Process
Virtual Memory

Kernel.dll

16-bit DOS Reserved
(0x0000000000000000)

NT Kernel
Virtual Memory

_KUSER_SHARED_DATA
(0xFFFFF78000000000)

Win7+: hal!HalpInterruptController
(0xFFFFFFFFFFD00000)

System Interrupt

ntdll!NtQueryIntervalProfile
Win10+: nt!HalDispatchTable

ntdll!NtQueryIntervalProfile

NULL Dereference

KD> !kuser

HAL (0x1000)

Physical Memory

ntoskrnl data

DOS Reserved

kuser data

Page Fault

Intel CPU
Virtual Address Translation

User Mode (Ring3)

Kernel Mode (Ring0)

• Paging Model Design by Intel CPU actually.

• CR0 PG-flag (bit 31) – Enable paging model or physical address model.

• CR4 PAE-flag (bit 5) – Physical Address Extension

• PAE == False: Use 32bit paging model

• PAE == True: Use 64bit paging model, then Check LME.

LME (Long Mode Enable, IA32_EFER MSR)
LME == False: Use PAE 36bit paging model
LME == True: “If the LME bit is set, the processor is i
n 4-level paging mode. This mode translates 48-bit
virtual addresses into 52-bit physical addresses, tho
ugh because the virtual addresses are limited to 48-
bits, the maximum addressable space is limited to 2
56TB.”

TXOne Networks | Keep the Operation Running

Intel 4-level paging model:
Virtual Address Translation

KRPCOESS

Intel CPU Reserved

PML4

PFN

PDP

PFN

PD PT

PFN

PFN

RAM

Page

Page Map Level 4 Page Directory Pointer Page Directory Page Table Byte Within Page

Byte

47 39 30 21 12 0

9bits 9bits 9bits 9bits 12bits

PTE

CR3

Each EPROCESS have their own
CR3 (KPROCESS.DirectBase)
to keep their current context,
and PTEs keep the status of th
e allocated memory

63

Windows Internals, Part 1 (Page 381)

TXOne Networks | Keep the Operation Running

Microsoft Launched a new round
of Pwn Attack & Mitigation

TXOne Networks | Keep the Operation Running

Known Mitigation of Kernel Pwn

• Microsoft said “OK, enough! We’re done with that. Let’s have some Kernel Protection😡”

• BYOVD technique is one of the variant Attack from Kernel Pwn

• Windows 10 RS2 (1703+): Release multiple exploit protection for MS-Edge Chakra

• User mode Exploit Protection

• Defender Exploit Guard now (EMET before Win10)

• ASR, ACG, CIG, CFG, DEP, ASLR, SEHOP, Stack-Pivot …

• Kernel Exploit Protection

• KASLR, PatchGuard & CRL (Certificate Revocation Lists)

• VBS (Virtualization-Based Security via Hyper-V) – Win10+

• HCVI – Kernel mode ACG

• SMEP – Kernel mode DEP

• KCFG – Kernel mode CFG

• OK. So that’s enough? ;)

TXOne Networks | Keep the Operation Running

KASLR: Nah, that’s not an issue for LPE ☺

• NT Kernel should be the first loaded module, which
ImageBase will be used to predict the ImageBase of all the
rest modules.

• We can leak the address just simply by Ring3 API
NtQuerySystemInformation() or EnumDeviceDrivers()

• Black Hat USA 2012: Easy local Windows Kernel exploitation

https://bbs.kanxue.com/thread-247281.htm

https://media.blackhat.com/bh-us-12/Briefings/Cerrudo/BH_US_12_Cerrudo_Windows_Kernel_WP.pdf

TXOne Networks | Keep the Operation Running

SMEP with VBS:
nobody can touch my CR4 😭

github.com/chompie1337/SMBGhost_RCE_PoC

• SMEP: Kernel mode DEP supported by Intel CPU

• Discussion of Hack In The Box Magazine #3 (Since Win7) used to detect RING-0 code running in USER SPACE

• If CR4 SMEP-flag set, Intel will check the current shellcode is user memory address or not,
while thread running in NT kernel (register CPL != 3, Current-Privilege-Level)

TXOne Networks | Keep the Operation Running

Abuse PTEs to turn any code to kernel code🍺

• nt!MiGetPteAddress – Leak any Virtual Address’ PTE records

• The latest layer of PML4: A quick way to locate any virtual memory’s PTE

• After Windows 10 1607 will be randomized (Before that PML4 is fixed)

• Control the U/S bit of PTEs

• A user memory can be considered as SUPERVISOR to run in kernel mode

TXOne Networks | Keep the Operation Running

MS: Bad boy😡 Let’s Introduce our New Friend - KCFG

• Old but Gold: Overwrite HAL pointers for execution

• Exploiting Common Flaws in Drivers (2007)

• KCFG (Kernel Control Flow Guard) another SMEP🤔

• Since Win10 Build 1607 / RS2 (1703)

• To avoid user-mode memory be used as kernel code

• KCFG 1.0: Old devices, Game PC, and VM don’t enable HVCI actually

• MS finally made a CFG dispatch route to verify all the pointers
of HAL callees shouldn’t be user memory or KUSER_SHARED_DATA
or BSOD ☺

• How? target address & 0x8000000000000000 != 0

• KCFG 2.0: HVCI (Hypervisor Code Integrity) is enabled

• Use Hyper-V to prevent arbitrary kernel pointer hijacking

"I'll ask your body": SMBGhost pre-auth RCE abusing Direct Memory Access structs

https://shinnai.altervista.org/papers_videos/ECFID.pdf
https://ricercasecurity.blogspot.com/2020/04/ill-ask-your-body-smbghost-pre-auth-rce.html

TXOne Networks | Keep the Operation Running

Kernel Protection Architecture

ntdll.dll

Process
Virtual Memory

Kernel.dll

16-bit DOS Reserved
(0x0000000000000000)

_KUSER_SHARED_DATA
(0xFFFFF78000000000)

Win7+: hal!HalpInterruptController
(0xFFFFFFFFFFD00000)

System Interrupt

Win10+: nt!HalDispatchTable

HAL (0x1000)

Physical Memory

ntoskrnl data

DOS Reserved

kuser data

Page Fault

Intel CPU
Virtual Address Translation

User Mode (Ring3)

Sorry…
But we’re here now

Kernel Virtual Memory

Kernel Mode (Ring0)

TXOne Networks | Keep the Operation Running

Kernel Protection Architecture

ntdll.dll

Process
Virtual Memory

Kernel.dll

16-bit DOS Reserved
(0x0000000000000000)

Kernel Virtual Memory

_KUSER_SHARED_DATA
(0xFFFFF78000000000, READ-ONLY)

System Interrupt

NT Kernel Module
(Ntoskrnl.exe)

Physical Memory

ntoskrnl data

DOS Reserved

kuser data

Intel CPU
Virtual Address Translation

User Mode (Ring3)

Kernel Mode (Ring0)Sorry…
But we’re here now

NT Kernel Module

NT Kernel Module

KASLR

Sensitive Kernel Function Pointers
(EX: HalDispatchTable)

nt!MmWriteableSharedUserData
(Windows 11 Insider Preview)

Page Fault

PxE Structure: Windows SMEP Bypass U=S by Core Security

Intel SMEP 1.0 (CR4)

SMEP 2.0:
Protected by Hyper-V

Null Dereference Patch (Win10+):
Disable by Default now and only x86 NTVDM.exe allow to use

KCFG router
verify target address

& 0x8000000000000000 != 0

TXOne Networks | Keep the Operation Running

A New Question🤔

ntdll.dll

Process
Virtual Memory

Kernel.dll

Kernel Virtual Memory

System Interrupt

NT Kernel Module
(Ntoskrnl.exe)

Physical Memory

Vulnerable
Driver Data

KCFG router
verify target address

& 0x8000000000000000 != 0

User Mode (Ring3)

Kernel Mode (Ring0)

Ugh…
code of the vulnerable drivers
is a kind of kernel code or not?

✅ SMEP 1.0 + 2.0: OK
✅ KCFG 1.0: OK
🆗 Null Dereference: Not Related
🆗 KASLR: Not Related

Vulnerble Kernel Driver

Sensitive Kernel Function Pointers
(EX: HalDispatchTable)

Intel SMEP 1.0 (CR4)

SMEP 2.0:
Protected by Hyper-V

🤔

Code Cave
(.text, .data, .rdata, etc)

ntdll!NtQueryIntervalProfile

💥
Page Fault

PxE Structure: Windows SMEP Bypass U=S by Core Security

TXOne Networks | Keep the Operation Running

KCFG + SMEP Full Bypass!

ntdll.dll

Process
Virtual Memory

Kernel.dll

Kernel Virtual Memory

NT Kernel Module
(Ntoskrnl.exe)

Physical Memory

Vulnerable
Driver Data

User Mode (Ring3)

Kernel Mode (Ring0)

dbutil_2_3.sys

Sensitive Kernel Function Pointers
(EX: HalDispatchTable)

Intel SMEP 1.0 (CR4)

SMEP 2.0:
Protected by Hyper-V

.data (ReadWrite → RWX)Write Primitive

Inject Kernel Shellcode
&

Modify the PTE record of .data section

Page Fault

TXOne Networks | Keep the Operation Running

KCFG + SMEP Full Bypass!

ntdll.dll

Process
Virtual Memory

Kernel.dll

Kernel Virtual Memory

NT Kernel Module
(Ntoskrnl.exe)

Physical Memory

Vulnerable
Driver Data

User Mode (Ring3)

Kernel Mode (Ring0)

dbutil_2_3.sys

Sensitive Kernel Function Pointers
(EX: HalDispatchTable)

Intel SMEP 1.0 (CR4)

SMEP 2.0:
Protected by Hyper-V

.data (ReadWrite → RWX)

Page Fault

KCFG 1.0

Write Primitive

ntdll!NtQueryIntervalProfile

TXOne Networks | Keep the Operation Running

TXOne Networks | Keep the Operation Running

The Practice of Windows HVCI
(Hypervisor-Protected Code Integrity)

OK. Wait, What?
How about HVCI 🤔

TXOne Networks | Keep the Operation Running

Private Memory Isolation

KRPCOESS

Intel CPU Reserved

PML4

PFN

PDP

PFN

PD PT

PFN

PFN

RAM

Page

Page Map Level 4 Page Directory Pointer Page Directory Page Table Byte Within Page

Byte

47 39 30 21 12 0

9bits 9bits 9bits 9bits 12bits

PTE

CR3

Each EPROCESS have their own
CR3 (KPROCESS.DirectBase)
to keep their current context,
and PTEs keep the status of th
e allocated memory

63

Modern OS only lookup virtual memory from PML4 to get the
physical memory address & memory status. But it’s vulnerabl
e while BYOVKD happened, because attackers can abuse
arbitrary kernel write to locate and control PTEs
for manipulation of existing kernel code.

TXOne Networks | Keep the Operation Running

Virtual Address
Translation

ntdll.dll

Process
Virtual Memory

Kernel.dll 0x1FB0000

HAL (0x1000)

Guest
Physical Memory

0x3000

User Mode (Ring3)
Kernel Virtual Memory

Kernel Mode (Ring0)

Child Partition (VM Guest) @ 300000

How’s Intel Hypervisor Works?

Virtual Machine
Control Structure

(VMCS)

ntdll.dll

Process
Virtual Memory

Kernel.dll

0x1AA0000
HAL (0x1000)

Guest
Physical Memory

0x2000

User Mode (Ring3)
Kernel Virtual Memory

Kernel Mode (Ring0)

Child Partition (VM Guest) @ 500000

Virtual Address
Translation

ntdll.dll

Process
Virtual Memory

Kernel.dll

0x13D0000 HAL (0x1000)

Guest
Physical Memory

0x1000

User Mode (Ring3)
Kernel Virtual Memory

Kernel Mode (Ring0)

Child Partition (VM Guest) @ 100000

Virtual Address
Translation

Convert GPA (Guest Physical Address)
Into SPA (System Physical Address)
by Intel SLAT0x300000

0x500000

Access GPA 0x1000

Access GPA 0x3000

Access GPA 0x2000

Physical RAM

0x100000

6TB

“When a VM access physical memory, with EPT enabled,
the hypervisor will tell the CPU to intercept this r
equest. And translate the memory the virtual machine
is trying to access into actual physical memory.”

TXOne Networks | Keep the Operation Running

Virtual Address
Translation

ntdll.dll

Process
Virtual Memory

Kernel.dll 0x1FB0000

HAL (0x1000)

Guest
Physical Memory

0x3000

User Mode (Ring3)
Kernel Virtual Memory

Kernel Mode (Ring0)

Child Partition (VM Guest) @ 300000

Virtual Machine
Control Structure

(VMCS)

ntdll.dll

Process
Virtual Memory

Kernel.dll

0x1AA0000
HAL (0x1000)

Guest
Physical Memory

0x2000

User Mode (Ring3)
Kernel Virtual Memory

Kernel Mode (Ring0)

Child Partition (VM Guest) @ 500000

Virtual Address
Translation

ntdll.dll

Process
Virtual Memory

Kernel.dll

0x13D0000 HAL (0x1000)

Guest
Physical Memory

0x1000

User Mode (Ring3)
Kernel Virtual Memory

Kernel Mode (Ring0)

Child Partition (VM Guest) @ 100000

Virtual Address
Translation

Convert GPA (Guest Physical Address)
Into SPA (System Physical Address)
by Intel SLAT

0x100000

0x300000

0x500000

Return SPA = 0x101000

Return SPA = 0x303000

Return SPA = 0x502000

How’s Intel Hypervisor Works?
Physical RAM

6TB

“When a VM access physical memory, with EPT enabled,
the hypervisor will tell the CPU to intercept this r
equest. And translate the memory the virtual machine
is trying to access into actual physical memory.”

TXOne Networks | Keep the Operation Running

ntdll.dll

Process
Virtual Memory

Kernel.dll

0x13D0000 HAL (0x1000)

Guest
Physical Memory

0x1000

User Mode (Ring3)
Kernel Virtual Memory

Kernel Mode (Ring0)

Child Partition (VM Guest) @ 100000

Virtual Address
Translation

0x100000

Return SPA = 0x101000

Second Level Address Translation (SLAT)
Physical RAM

6TB

KRPCOESS

Intel CPU Reserved

PML4
(Guest)

PFN

PDP

PFN

PD PT

PFN

PFN

PML4 PDP PD PT Offset

47 39 30 21 12 0

9bits 9bits 9bits 9bits 12bits

PTE

CR3

63

Access GPA 0x1000

EPT

PFN

EPTE

Virtual Machine Control Structure
(VMCS)

Guest @ 100000

Extended Page Table Entry (EPTE)

EPT (Extended Page Tables)
“At a basic level, SLAT (EPT)
allows the hypervisor to cre
ate an additional translatio
n of memory - giving the hyp
ervisor power to delegate me
mory how it sees fit.”

But it sounds expensive, right?
Yeah, so this will work only you really want to run VMs :)

Only executing Intel HyperCall in
structions with Supervisor Privil
ege (Ring0) allows to set the EPT

TXOne Networks | Keep the Operation Running

• Isolation is manifest through VTL (Virtual Trust Levels)

• VTL 1 – (System VM) “secure kernel” - securekernel.exe

• VTL 0 – (Guest VM) “normal kernel” end-users interact with –
ntoskrnl.exe

• Both of these VTLs are located in the root partition. You can
think of these two VTLs as “isolated virtual machines” and
they “share” the same physical memory address space.

• EPTE used by Hypervisor-Protected Code Integrity (HVCI)

• EPTEs are used to create a “second view” of memory

• With this view describing all of RAM as either readable and
writable (RW) but not executable - or readable and
executable - but not writable, when dealing with HVCI.

• This ensures that no pages exist in the kernel which are
writable and executable at the same time - which is a
requirement for unsigned-code!

Virtualization-based Security (VBS)

Ntoskrnl.exe (VTL0)

Physical Windows Device

Kernel Memory Access

Securekernel.exe (VTL1)

New Kernel Code
Attribute Fork

HyperCall to set EPTE

legal or illegal

VMCS

Extended Page Table Entry (EPTE)

TXOne Networks | Keep the Operation Running

• VSM startup section of Windows Internals 7

• “… Starts the VTL secure memory manager finally walks
the NT loaded module list to establish each driver state,
creating a NAR (normal address range) data structure
for each one and compiling an Normal Table Entry (NTE)
for every page composing the boot driver’s sections.
FURTHERMORE, THIS APPLIES THE CORRECT VTL 0 SLAT
PROTECTION TO EACH DRIVER’S SECTIONS.”

• Intel SLAT: CPU will follow this table when HVCI is on

Use Hyper-V to Prevent RWX

securekernel!SkmiProtectSinglePage

each of the boot-loaded drivers has each section (.text, etc.) protected by
HVCI. This is done by iterating through each section of the boot-loaded driver
s and applying the correct VTL 0 permissions.

https://msrc.microsoft.com/blog/2018/12/first-steps-in-hyper-v-research

https://msrc.microsoft.com/blog/2018/12/first-steps-in-hyper-v-research

TXOne Networks | Keep the Operation Running

KKCFG 2.0:
Protected by Hyper-V

Full VBS Enable

ntdll.dll

Process
Virtual Memory

Kernel.dll

Kernel Virtual Memory

System Interrupt

NT Kernel Module
(Ntoskrnl.exe)

Physical Memory

Vulnerable
Driver Data

KCFG router
verify target address

& 0x8000000000000000 != 0

User Mode (Ring3)

Kernel Mode (Ring0)

Ugh…
code of the vulnerable drivers
is a kind of kernel code or not?

✅ SMEP 1.0 + 2.0: OK
✅ KCFG 1.0: OK
⚠️ KCFG 2.0: No 
🆗 Null Dereference: Not Related
🆗 KASLR: Not Related

Vulnerble Kernel Driver (Secure by HVCI)

Sensitive Kernel Function Pointers
(EX: HalDispatchTable)

Intel SMEP 1.0 (CR4)

SMEP 2.0:
Protected by Hyper-V

🤔

Code Cave
(.text, .data, .rdata, etc)

ntdll!NtQueryIntervalProfile

Page Fault

Write Primitive

TXOne Networks | Keep the Operation Running

• nt!PspUserThreadStartup being called - which is the initial thread
routine, according to Windows Internals Part 1: 7th Edition.

• Suspended Thread – alertable in the APC queue and wait for resume

What Happens When Asleep?🥱

• Windows Security → Core Isolation
→ Memory Integrity (HVCI)

• HVCI, at a high level, is a technology on
Windows systems that prevents attackers from
executing unsigned-code in the Windows
kernel by essentially preventing readable,
writable, and executable memory (RWX) in
kernel mode.

TXOne Networks | Keep the Operation Running

ROP Chain to Bypass Full VBS

ntdll.dll

Process
Virtual Memory

Kernel.dll

Kernel Virtual Memory

User Mode (Ring3)

Kernel Mode (Ring0)

Vulnerble Kernel Driver (Secure by HVCI)

Sensitive Kernel Function Pointers
(EX: HalDispatchTable)

Code Cave
(.text, .data, .rdata, etc)

Wait for
APC Queue

NT Kernel Module
(Ntoskrnl.exe)

SUSPENDED ETHREAD

Stack of Return Address Chains
to nt!PspUserThreadStartup()

ntdll!ZwCreateThread

🆗 SMEP 1.0 + 2.0: Not Related
🆗 KCFG 1.0 + 2.0: Not Related
🆗 Null Dereference: Not Related
🆗 KASLR: Not Related
✅ HVCI: OK ☺

TXOne Networks | Keep the Operation Running

ROP Chain to Bypass Full VBS

ntdll.dll

Process
Virtual Memory

Kernel.dll

Kernel Virtual Memory

User Mode (Ring3)

Kernel Mode (Ring0)

Vulnerble Kernel Driver (Secure by HVCI)

Sensitive Kernel Function Pointers
(EX: HalDispatchTable)

Code Cave
(.text, .data, .rdata, etc)

Write Primitive

New Execution Chain!
to call nt!ZwOpenProcess

NT Kernel Module
(Ntoskrnl.exe)

SUSPENDED ETHREAD

Stack of Return Address Chains
to nt!ZwOpenProcess()

ntdll!ZwCreateThread

ntdll!ZwResumeThread

🆗 SMEP 1.0 + 2.0: Not Related
🆗 KCFG 1.0 + 2.0: Not Related
🆗 Null Dereference: Not Related
🆗 KASLR: Not Related
✅ HVCI: OK ☺

TXOne Networks | Keep the Operation Running

TXOne Networks | Keep the Operation Running

TXOne Networks | Keep the Operation Running

• ROP chain on KTHREAD Stack just Not Dead Yet

• KCET (Control-Flow Enforcement Technology in Windows Kernel)

• Kernel-mode Hardware Enforced Stack Protection (HSP)

• from Windows 10 20H2 ~ Windows 11 22H2 still disable by default

• All the devices still under the risk

• Shadow Stacks based on Intel CET

• Only support when the CPU > Tiger Lake / AMD Zen3

• You can only choose VM Host or Client to use HVCI 

• Intel SLAT only support one of them enable Hyper-V at the same time.

• How about your cloud services? ☺

• Full Protection enable is Powerful

• HVCI + KCFG + KCET + SMEP + Full-SMAP (maybe?)

• But only Data Manipulation by arbitrary read/write still
harmful in the wild

Mitigation is Coming?

TXOne Networks | Keep the Operation Running

A new trend of abusing RCE-level exploits for BYOVD

TXOne Networks | Keep the Operation Running

SMBGhost as LPE

• Yes, MS indeed did the good job to build up a great mitigation/kernel protection
which let attackers unable to made the RCE attacks again.

• But Mitigation is a Mitigation; Not a Patch!☺

• Many RCE mitigation at first time used to make attack hard from remote but not an issues for LPE ☺

• Worst thing is, the vulnerable code is in OS native driver.

• Third-party security vendors doesn’t have the ability to block the native NT kernel drivers

• Trendy method of BYOVD attacks prevention

msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2020-0796

blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-lo
cal-privilege-escalation-writeup-and-poc/

https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/
https://blog.zecops.com/research/exploiting-smbghost-cve-2020-0796-for-a-local-privilege-escalation-writeup-and-poc/

TXOne Networks | Keep the Operation Running

🔥AFD.sys: Your TCP Driver is on Fire🔥

• Works on Windows 11 22H2

• Maybe you’ll say: that’s not easy for every native drivers
could have the high-risk vulnerabilities to remotely control
kernel memory, right?

• All we want for LPE is only arbitrary read/write from
userland

• Like a simple TCP/UDP library used to service user’s
requests, might appears the chance to do read/write in
kernel

https://securityintelligence.com/posts/patch-tuesday-exploit-wednesday-pwnin
g-windows-ancillary-function-driver-winsock/

TXOne Networks | Keep the Operation Running

So HVCI+KCET is the End of Kernel Pwn? Nah.

• Yarden Shafir speech on TyphoonCon 2022:
One I/O Ring to Rule Them All: A Full Read/Write Exploit Primitive
on Windows 11 22H2

• This is the Windows implementation of a ring buffer – a circular buffer,
in this case used to queue multiple I/O operations simultaneously

• to allow user-mode applications performing a lot of I/O operations to
do so in one action instead of transitioning from user to kernel and
back for every individual request.

https://windows-internals.com/one-i-o-ring-to-rule-them-all-
a-full-read-write-exploit-primitive-on-windows-11/

https://windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11/
https://windows-internals.com/one-i-o-ring-to-rule-them-all-a-full-read-write-exploit-primitive-on-windows-11/

TXOne Networks | Keep the Operation Running

Thank you for your attention
Keep the operation running!

	預設章節
	投影片 1
	投影片 2: Sheng-Hao Ma
	投影片 3: Outline

	Background
	投影片 4: BYOVD Background: Strategies of Abusing Kernel Pwn
	投影片 5: What’s BYOVD?
	投影片 6: Classic: Null Pointer Dereference
	投影片 7: HALDispatchTable
	投影片 8: KUSER_SHARED_DATA
	投影片 9: Classic Kernel Exploitation of LPE
	投影片 10: Intel 4-level paging model: Virtual Address Translation

	Microsoft Launched a new round of Pwn Attack/Mitigation
	投影片 11: Microsoft Launched a new round of Pwn Attack & Mitigation
	投影片 12: Known Mitigation of Kernel Pwn
	投影片 13: KASLR: Nah, that’s not an issue for LPE 
	投影片 14: SMEP with VBS: nobody can touch my CR4 😭
	投影片 15: Abuse PTEs to turn any code to kernel code🍺
	投影片 16: MS: Bad boy😡 Let’s Introduce our New Friend - KCFG
	投影片 17: Kernel Protection Architecture
	投影片 18: Kernel Protection Architecture
	投影片 19: A New Question🤔
	投影片 20: KCFG + SMEP Full Bypass!
	投影片 21: KCFG + SMEP Full Bypass!
	投影片 22

	HVCI
	投影片 23: The Practice of Windows HVCI (Hypervisor-Protected Code Integrity)
	投影片 24: Private Memory Isolation
	投影片 25
	投影片 26
	投影片 27
	投影片 28: Virtualization-based Security (VBS)
	投影片 29: Use Hyper-V to Prevent RWX
	投影片 30: Full VBS Enable
	投影片 31: What Happens When Asleep?🥱
	投影片 32: ROP Chain to Bypass Full VBS
	投影片 33: ROP Chain to Bypass Full VBS
	投影片 34
	投影片 35
	投影片 36: Mitigation is Coming?

	A new trend of abusing RCE-level exploits for BYOVD
	投影片 37: A new trend of abusing RCE-level exploits for BYOVD
	投影片 38: SMBGhost as LPE
	投影片 39: 🔥AFD.sys: Your TCP Driver is on Fire🔥
	投影片 40: So HVCI+KCET is the End of Kernel Pwn? Nah.
	投影片 41

